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ABSTRACT: A self-optimizing continuous flow reactor has been developed using the Super-Modified Simplex algorithm. This
system, coupled with online gas chromatographic analysis enables automated optimization via a feedback control loop without user
intervention. This has been applied to the methylation of 1-pentanol in supercritical carbon dioxide using dimethyl carbonate and
methanol with γ-alumina catalyst to give 98% and ∼68% yield of pentyl methyl ether respectively. This was accomplished by
variation of four reaction parameters; Temperature, Pressure, CO2 Flow rate, and the Ratio of methylating agent.

There is increasing interest in continuous or flow reactors
for making pharmaceutical or fine chemicals.1�3 The attrac-

tions of this approach include the option of running sequential
reactions, the straightforward integration of chemical or physical
sensors, accessing awider operatingwindow thanwithbatch reactors,
and a simpler, more obvious route to scale up. Flow reactors also
lend themselves to a higher degree of automation as displayed,
for example, in the H-cube continuous flow hydrogenation
reactor.4

Our research group has specialized in the development and
automationof continuous reactors using supercriticalCO2 (scCO2),
as the solvent. Examples include hydrogenation,5,6 hydroform-
ylation,7 oxidation,8 photooxidation,9,10 and acid-catalysed reac-
tions, particularly etherification.11�13 Although these reactions
have been largely carried out on a small scale, one hydrogenation
reaction, the hydrogenation of isophorone, was scaled up14 to
1000 tons per annum.Most of our reactions have been optimized
manually for maximum yield, but manual optimizations are often
relatively laborious, and not all reaction variables were optimized
due to time constraints.

Nevertheless, a major advantage of optimizing for yield is that
the maximum conversion to the desired product is obtained within
the limitations of the reactor system. This usually reduces the
need for purification which can often be a wasteful process.

Overall, optimizing for yield can reduce the environmental
impact of a process, whilst also reducing the cost associated with
production.15�20 Traditionally, the experimenter varies a single
factor at a time, and measures the effect that this has on the
yield.19,21,22 Only after the first factor has been optimized is an-
other factor varied. Not only is this time consuming, but the
interdependence of factors can be overlooked, preventing a full
optimization from being reached, even though the yield has been
increased.23 Optimization of supercritical reactions is particularly
tedious because the tunable density of the solvent adds an extra
variable to be optimized compared to more traditional solvents.
Whatever the solvent, automation of a flow reactor removes much
of the tedium of optimization. More importantly, automation
opens up the possibility of developing self-optimizing reactors.

Such self-optimizing continuous reactors consist of a reactor
with automated process control and an integrated online

analytical technique coupled to a feedback algorithm. The system
then acts as an autonomous unit where reactants are pumped in
and the process is optimized automatically, resulting in a system
which delivers products under optimized conditions, with the
optimization process greatly accelerated compared to manual
optimization.

A series of recent publications have described some examples
of such self-optimizations. For example, Krishnadasan et al.24

generated nanoparticles using a microreactor system where flow
rates and temperature were controlled by computer and an online-
fluorimeter was used to determine the optimal composition of
nanoparticles produced. An automated feedback loop using the
sequential application of the Stable Noisy Optimization by Branch
and Fit (SNOBFIT) algorithm was used to generate new reaction
conditions leading to optimal production of nanoparticles with
the desired emission wavelength.

McMullen et al. have used a similar approach withmicroreactors
with online high-performance liquid chromatography (HPLC),25

for the optimization of a Heck reaction,22 Knoevenagel con-
densation and the oxidation of benzyl alcohol. In their system
the Nelder and Mead Modified Simplex (NMSIM) algorithm26

was used to generate new conditions to complete the feedback
loop.22

Very recently, we described the development of an auto-
mated self-optimizing reactor for acid-catalysed reactions in CO2,
Figure 1.27 This reactor is a self-contained unit, where the reactants
flow in, the reaction is optimized by the Super-Modified Simplex
algorithm (SMSIM, see below) within the control software, and
product flows out. We showed that the reactor was capable of
carrying out a three-parameter self-optimization (Temperature,
Pressure, and Flow rate of CO2) for (a) the dehydration of ethanol
over (γ)-alumina and (b) the production of pentyl-methyl ether
from 1-pentanol and dimethyl carbonate (DMC), Scheme 1, on a
scale that was considerably larger than the previous demonstra-
tions of self-optimization described above.
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In this paper we extend our approach to a four-parameter
optimization, applying it again to the etherification of 1-pen-
tanol in scCO2, and compare the effectiveness of MeOH and
DMC as methylating agents. First, we report the results of the
optimization, and then we describe our implementation of the
software in more detail than was possible in our original
communication.27

’RESULTS AND DISCUSSION

The etherification of 1-pentanol has been optimized with four
parameters: (i) the Temperature of the preheater and the
γ-alumina catalyst bed, (ii) the Pressure, (iii) Flow rate of CO2,
and (iv) the Molar ratio of the 1-pentanol:methylating agent
(MA, either DMC orMeOH). Varying this ratio was achieved by
using twoHPLC pumps; one pump delivered a constant flow of a
1:1 molar ratio mixture of 1-pentanol and MA, while the other
pump delivered a flow of pureMA at a rate that could be varied by
the software.

Analysis of the reactor output was performed by online
gas�liquid chromatography (GLC), the results from which
were used to calculate the yield of PME with respect to
1-pentanol; these results were then fed into the feedback loop
described below.

Figure 2 shows that the SMSIM algorithm rapidly optimized
the DMC system to >90% yield of PME in∼10 measurements
and then proceeded to optimize the system further to ∼98%
yield where the optimization was terminated because the

covariance limit had been reached, Table 1. The full optimiza-
tion with DMC required 47 measurements and took just under
25 h to complete. By comparison, the MeOH system required
125 measurements and ran for 74.3 h, most probably due to the
optimal conditions being further from the starting point. Even
so, the maximum achievable yield of PME was only 68% with
MeOH (Table 2 and Figure 2). This confirms the conclusions
of our previously published study11 that DMC is a more effective
methylating reagent than MeOH.

It can be seen from these results that the four-parameter
optimization was successful for both MeOH and DMC in the
direct methylation of 1-pentanol, with DMC giving much higher
yields of PME than MeOH. Furthermore, DMC has the advan-
tage that it reacts at a lower temperature, 246 �C, rather than
328 �C, albeit at a slightly higher pressure, 175 bar compared to
140 bar for MeOH (see Figure 3).

’AUTOMATED OPTIMIZATION

To automate adaptive optimization techniques, it is neces-
sary to implement feedback control. This requires commands
to be sent to the control equipment as well as being able to
monitor the current conditions. Each control device of the
flow reactor (CO2 pump, organic reagent pumps, tempera-
ture controllers, etc.) is fitted with an RS-232 serial commu-
nication module linked to a standard desktop computer.
Monitoring of reactor temperature and pressure is performed
using a PicoLog data logger connected to k-type thermocouples
and RDP pressure transducers (Figure 1). Custom software,
written in the Matlab programming environment is used to
coordinate the control of the rig. Communication between the
software and each control element of the rig was achieved by
incorporating the serial communication protocols provided by
Jasco,28,29 Eurotherm,30 and VICI Valco31 into the software
itself. Within this control and monitoring system, customiz-
able feedback loops permit automated optimization reactions
(Figure 4):

Our work employs the Super Modified Simplex algorithm
(SMSIM).33 This adaptive algorithm is used to follow the
response surface of a number of factors to locate an optimum.
In practical terms, this means changing various reaction con-
ditions (temperature, pressure, etc.), and measuring the re-
sponse at those conditions to determine the location of the
next experiment. Once the response, which in this paper is the
yield, at a set of conditions has been measured, the algorithm is
able to calculate a location for another experiment, which
should result in a higher yield. This process continues, increas-
ing the yield of the reaction until a predefined stopping
criterion is reached. The SMSIM algorithm was originally
introduced by Routh et al.33 as an advanced form of the
Modified simplex developed by Nelder and Mead;26 both of
these algorithms are commonly used in analytical techniques to
optimize chromatographic methods, etc.26,34�37 The modifica-
tions in the SMSIM allow the simplex to follow the response

Figure 1. Schematic diagram of the self-optimizing reactor, where M is
a preheater and mixer, R is the reactor, SL is the sample loop, GLC is the
online gas�liquid chromatograph, and BPR is a back-pressure regulator.
The control software runs on a standard PC. See Experimental Section
for full details.

Scheme 1. Methylation of 1-pentanol by DMC to yield PME
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surface more closely, and to accelerate across it when appro-
priate, resulting in fewer iterations to reach the optimum,23 and
in a more tightly defined optimum than either the basic simplex
or NMSIM algorithms33 (see Figure 5).

A simplex is a geometrical figure, with F þ 1 vertices, where
F is the number of variable factors being investigated. Each
vertex represents the coordinates of an actual experiment, e.g.
200 �C and 150 bar. In Figure 6, a simplex with two variable
factors (a triangle) is used to describe the simplex mechanism.
To carry out such an optimization, one needs three sets of user-
defined conditions to define the vertices of the first simplex.
These vertices are then ranked according to the response

measured. The vertex which had the best response is labeled
B, and the vertex with the worst is labeledW. All other vertices
are labeled according to the proximity of their response to the
response of the worst (next worst (N), etc.) see Figure 6. A
measurement is then carried out at the midpoint position (P),
calculated as the average of all the vertices, apart from the
worst. The position of the reflection vertex, R, is calculated
using (eq 1), in the reflected position of W, where R is the
reflection coefficient, which equals 2 in the SMSIM algorithm,
(Figure 6).

R ¼ RPþWð1� RÞ ð1Þ

Table 1. Initial parameters (conditions 1�5) and optimal conditions for the methylation of 1-pentanol using DMC following
optimization using the SMSIM algorithma

condition CO2 flow rate/mL min�1 temperature/ �C pressure/bar [DMC]:[1-pentanol] yield/ % PME

1 1.00 200 150 1.57 40.7

2 1.24 200 150 1.57 48.6

3 1.12 229 150 1.57 66.7

4 1.12 209 163 1.57 52.0

5 1.12 209 153 4.29 87.6

optimal 1.57 246 175 10.94 98.7 ( 0.3
a Yield calculated using GLC analysis and an internal normalization method.

Table 2. Initial parameters (conditions 1�5) and optimal conditions for the methylation of 1-pentanol using MeOH following
optimization using the SMSIM algorithma

condition CO2 flow rate/ mL min�1 temperature/ �C pressure/ bar [MeOH]:[1-pentanol] yield/ % PME

1 1.00 200 150 4.9 2.7

2 1.24 200 150 4.9 2.4

3 1.12 229 150 4.9 1.1

4 1.12 209 163 4.9 4.1

5 1.12 209 153 10.5 1.5

optimal 0.94 328 140 7.2 67.8 ( 0.2
a Yield calculated using GLC analysis and an internal normalization method.

Figure 2. Change in yields of 1-pentyl-methyl ether, PME, during the SMSIM optimization of 1-pentanolþ DMC, and of 1-pentanolþMeOH, with
four parameters: Temperature, Pressure, CO2 Flow rate, and Ratio of 1-pentanol:methylating agent. Filled points represent vertices that were retained in
the simplex. The optimization was terminated when the covariance of the responses of a simplex were below 0.6%.
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Once R has been defined, an experiment is performed at these
conditions and the response determined. A key feature of the

SMSIM algorithm is that a further point is identified before a new
simplex is constructed. This is done by constructing a second

Figure 3. Comparison of yield of PME and variation of conditions during a SMSIM optimization of 1-pentanol for either DMC (left) orMeOH (right).
Filled points are vertices that were retained by the simplex. (a,b) Variation in CO2 flow rate. (c,d) Variation in the ratio of methylating agent to
1-pentanol. (e,f) Variation in pressure. (g,h) Variation in temperature.
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order polynomial at WPR, to calculate the optimum expansion
factor (Yopt eq 2), where w, p, and r are the responses of the
system at W, P, and R, respectively.

Yopt ¼ w� p
w� 2pþ r

þ 0:5 ð2Þ

The optimum vertex (O), calculated from eq 3, is located a
distance Yopt from W, along line Y, (Figure 6).

O ¼ YoptPþWð1� YoptÞ ð3Þ
The response of O is measured, and in general, the

response of O is greater than that of R. A new simplex is

Figure 4. Schematic of the feedback loop procedure for optimization of a continuous flow reactor system.32 Commands are sent to equipment using
automated RS232 control software to set reaction parameters. Conditions are tested using a custom algorithm which checks that the absolute difference
between actual values and the set value is less than an offset value (e.g., 3.5 �Cor 5 bar) and that the range within the actual values over the last 2min is less
than a predefined noise value (e.g., 2 �C or 2 bar). The reactor is left to equilibrate to steady state for 20min following this step. The system response was
determined by calculating the yield byGLCpeak integration using GC solution. The values for system response and the values for each factor (i.e., the set
conditions) are then passed to the particular evolutionary search algorithm being used, which calculates whether the optimization should be stopped. If
this calculation shows that the optimization should continue, then new conditions are calculated and passed back to the main feedback control loop, and
the optimization process is repeated.

Figure 5. Example of the basic simplex (left) and SMSIM (right) following a response surface until optimum region is reached. The basic algorithm uses
a fixed size of simplex. By contrast the simplexes from SMSIM can expand or contract to match the shape of the response surface more closely, and to
locate the optimum more precisely.
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formed with O, and the vertices from the previous simplex,
excluding W, (Figure 4).

The procedure is repeated using this new simplex.New simplexes
are generated continuously by this process, until some user-defined
termination criteria are met. In these experiments the first simplex is
automatically generated based on the boundary limitations and
“best guess” initial starting conditions provided by the operator.32 By
measuring the response, and determining the new experimental
conditions in this way, the SMSIM algorithm is able to locate the
optimum conditions for a reaction, within the boundaries
determined by equipment limitations (see Table 3). Different
criteria determine how the simplex reacts when a system
boundary is encountered, a detailed description of which, and
other exceptions to the procedure outlined above, can be found
in the tutorial by Morgan et al.23 In our software, Yopt is set to a
maximum value of 3, and a minimum of �1, in accordance with
common practice.23 In addition, Yopt is set to be at least (0.3
from either W and P, as recommended by Routh et al.33

’CONCLUSIONS

In this work we have demonstrated the use of a self-optimizing
reactor, which incorporates online analysis, reactor control
and an evolutionary search algorithm to effectively optimize
the methylation of 1-pentanol by variation of four reaction

parameters (98% yield), leading to a more successful optimiza-
tion than with three parameters (70% yield). The use of DMC
and of MeOH as alkylating agents were compared, and it was
shown that DMC gave the product at higher yield and at
substantially milder conditions. We are now applying this
adaptive technique not only to optimize reaction yield but also
to optimize the productivity and efficiency of our reactor system
by optimizing for space-time yield and E-factor respectively. In
addition, we are applying the technique to other classes of
reaction.

’EXPERIMENTAL SECTION

CAUTION! The experiments described in this paper involve the
use of high pressures and require equipment with the appropriate
pressure rating.

Figure 1 shows a schematic of the supercritical flow reactor,
and the associated feedback loops. CO2 (BOC gases, food fresh
grade) is pumped by a programmable HPLC CO2 pump (Jasco
PU-1580-CO2). All organic solutions were pumped by HPLC
pumps (Jasco PU-980). The premixer and reactor were both
heated using cartridge heaters within aluminium heating blocks
controlled by programmable heating controllers (Eurotherm 2216
L). The premixer and reactor were 10 mL 316 stainless steel tubes
(156mm� 12 mmOD) filled with sand in the premixer, and the
catalyst (NWA-150 (γ)-alumina (supplied by SI group; powder,
150 m2/g surface area and containing trace impurities of SiO2,
Fe2O3, and Na2O)). The system pressure was controlled by a
Jasco BPR (Jasco BP-1580�81), and monitored by pressure
transducers in both HPLC pumps and the BPR. Analysis of reactor
output was measured by an online Shimadzu GC-14B, using an
AllTech SE-30 column (30 m, 0.25 mm ID, 0.25 μm FT). In a
typical experiment, system parameters and starting conditions
are input to the custom control program, the HPLC pumps are
supplied with the required organic solution, and a complete leak
test is carried out using Snoop leak detection fluid. Once the
simplex program is started, the automated optimization program
will take samples of the reactor flow, using the GLC tomeasure the
response, and changes the conditions accordingly. Commercially
available DMC (Alfa Aesar, 99%) and 1-pentanol (Sigma-Aldrich,
99%) were used in all experiments without further purification.
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